Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474614

RESUMO

The Selçuk district of Izmir is one of the most essential regions in terms of olive oil production. In this study, 60 olive oil samples were obtained from five different locations (ES: Eski Sirince Yolu, KK: Kinali Köprü, AU: Abu Hayat Üst, AA: Abu Hayat Alt, and DB: Degirmen Bogazi) in the Selçuk region of Izmir during two (2019-2020 and 2020-2021) consecutive cropping seasons. Quality indices (free acidity, peroxide value, p-Anisidine value, TOTOX, and spectral absorption at 232 and 270 nm) and the fatty acid, phenolic, and sterol profiles of the samples were determined to analyze the changes in the composition of Selcuk olive oils according to their growing areas. When the quality criteria were analyzed, it was observed that KK had the lowest FFA (0.11% oleic acid, PV (6.66 meq O2/kg), p-ANV (11.95 mmol/kg), TOTOX (25.28), and K232 (1.99) values and K270 had the highest value. During the assessment of phenolic profiles, the ES group exhibited the highest concentration of the phenolic compound p-HPEA-EDA (oleocanthal), with a content of 93.58 mg/kg, equivalent to tyrosol. Upon analyzing the fatty acid and sterol composition, it was noted that AU displayed the highest concentration of oleic acid (71.98%) and ß-sitosterol (87.65%). PCA analysis illustrated the distinct separation of the samples, revealing significant variations in both sterol and fatty acid methyl ester distributions among oils from different regions. Consequently, it was determined that VOOs originating from the Selçuk region exhibit distinct characteristics based on their geographical locations. Hence, this study holds great promise for the region to realize geographically labeled VOOs.


Assuntos
Olea , Ácido Oleico , Azeite de Oliva/análise , Ácidos Graxos , Peróxidos , Esteróis , Óleos de Plantas
2.
Food Chem ; 447: 139038, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507946

RESUMO

Several processes have been developed in the past to selectively extract oleuropein and its aglycones from olive derived materials. In the present manuscript, we outline a novel approach for processing olive leaves aqueous extracts. This allowed first to select microwave irradiation as the methodology able to provide a large enrichment in oleuropein. Subsequently, the use of lamellar solids led to the selective and high yield concentration of the same. Adsorption on solids also largely contributed to the long term chemical stability of oleuropein. Finally, an eco-friendly, readily available, and reusable catalyst like H2SO4 supported on silica was applied for the hydrolysis of oleuropein into hydroxytyrosol and elenolic acid. This latter was in turn selectively isolated by an acid-base work-up providing its monoaldehydic dihydropyran form (7.8 % extractive yield), that was unequivocally characterized by GC-MS. The isolation of elenolic acid in pure form is described herein for the first time.


Assuntos
Olea , Piranos , Olea/química , Iridoides/análise , Glucosídeos Iridoides/análise , Folhas de Planta/química , Extratos Vegetais/química , Azeite de Oliva/análise
3.
J Sci Food Agric ; 104(7): 3913-3925, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345161

RESUMO

BACKGROUND: Food adulteration has long been considered a major problem. It compromises the quality, safety, and nutritional value of food, posing significant risks to public health. Novel techniques are required to control it. RESULTS: A graphene-based T-shaped monopole antenna sensor was tested for its ability to detect adulteration in liquid foods. Mustard oil was the pure reference sample used for product quality analysis. Olive oil and rice bran oil were adulterants added to the pure sample. It was found that the sensor could be immersed easily in the liquid sample and provided precise results. CONCLUSION: The graphene-based T-shaped monopole antenna sensor can be used for the quality assessment of liquid food products and is suitable for real-time monitoring. © 2024 Society of Chemical Industry.


Assuntos
Grafite , Azeite de Oliva/análise , Contaminação de Alimentos/análise , Óleo de Farelo de Arroz/análise
4.
J Agric Food Chem ; 72(5): 2813-2825, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38263713

RESUMO

A head space-solid phase microextraction-gas chromatography-mass spectrometery (HS-SPME-GC-MS) method for the simultaneous analysis of pentene dimers from lipoxygenase (LOX) pathway, monoterpenes, and sesquiterpenes in extra virgin olive oil (EVOO) was proposed. A Doehlert design was performed; the conditions of the HS-SPME preconcentration step (extraction temperature, extraction time, sample amount, and desorption time) were optimized by response surface methodology, allowing defining the method operable design region. A quantitative method was set up using the multiple internal standard normalization approach: four internal standards were used, and the most suitable one was selected for area normalization of each external standard. The quantitative method was successfully validated and applied to a series of monocultivar EVOOs. This is the first paper in which a quantitative method using commercial standards has been proposed for the analysis of an important class of molecules of EVOO such as pentene dimers. The optimized method is suitable for routine analysis aimed at characterizing high quality EVOOs.


Assuntos
Terpenos , Compostos Orgânicos Voláteis , Azeite de Oliva/análise , Terpenos/análise , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Alcenos/análise , Compostos Orgânicos Voláteis/análise , Hidrocarbonetos
5.
Anal Chim Acta ; 1289: 342204, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38245205

RESUMO

BACKGROUND: Gas chromatography-ion mobility spectrometry (GC-IMS) is a powerful analytical technique which has gained widespread use in a variety of fields. Detecting peaks in GC-IMS data is essential for chemical identification. Topological data analysis (TDA) has the ability to record alterations in topology throughout the entire spectrum of GC-IMS data and retain this data in diagrams known as persistence diagrams. To put it differently, TDA naturally identifies characteristics such as mountains, volcanoes, and their higher-dimensional equivalents within the original data and measures their significance. RESULTS: In the present contribution, a novel approach based on persistent homology (a flagship technique of TDA) is suggested for automatic 2D peak detection in GC-IMS. For this purpose, two different GC-IMS data examples (urine and olive oil) are used to show the performance of the proposed method. The outputs of the algorithm are GC-IMS chromatogram with detected peaks, persistence plot showing the importance (intensity) of the detected peaks and a table with retention times (RT), drift times (DT), and persistence scores of detected peaks. The RT and DT can be used for identification of the peaks and persistence scores for quantitation. Additionally, watershed segmentation is applied to the GC-IMS images to index individual peaks and segment overlapping compounds allowing for a more accurate identification and quantification of individual peaks. SIGNIFICANCE: Inspection of the results for GC-IMS datasets showed the accurate and reliable performance of the proposed strategy based on persistent homology for automatic 2D GC-IMS peak detection for qualitative and quantitative analysis. In addition, this approach can be easily extended to other types of hyphenated chromatographic and/or spectroscopic data.


Assuntos
Líquidos Corporais , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Azeite de Oliva/análise , Líquidos Corporais/química , Algoritmos , Compostos Orgânicos Voláteis/análise
6.
Anal Chem ; 96(4): 1803-1811, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243913

RESUMO

Olive oil is a prominent agricultural product which, in addition to its nutritional value and unique organoleptic characteristics, offers a variety of health benefits protecting against cardiovascular disease, cancer, and neurodegenerative diseases. The assessment of olive oil authenticity is an extremely important and challenging process aimed at protecting consumers and producers. The most frequent adulteration involves blending with less expensive and readily available vegetable/seed oils. The methods for adulteration detection, whether based on changes in metabolite profiles or based on DNA markers, require advanced and expensive instrumentation combined with powerful chemometric and statistical tools. To this end, we present a simple, multiplex, and inexpensive screening method based on the development of a multispecies DNA sensor for sample interrogation with the naked eye. It is the first report of a DNA sensor for olive oil adulteration detection with other plant oils. The sensor meets the 2-fold challenge of adulteration detection, i.e., determining whether the olive oil sample is adulterated and identifying the added vegetable oil. We have identified unique, nucleotide variations, which enable the discrimination of seven plant species (olive, corn, sesame, soy, sunflower, almond, and hazelnut). Following a single PCR step, a 20 min multiplex plant-discrimination reaction is performed, and the products are applied directly to the sensing device. The plant species are visualized as red spots using functionalized gold nanoparticles as reporters. The spot position reveals the identity of the plant species. As low as <5-10% of adulterant was detected with particularly good reproducibility and specificity.


Assuntos
Nanopartículas Metálicas , Óleos de Plantas , Óleos de Plantas/análise , Azeite de Oliva/análise , Reprodutibilidade dos Testes , Ouro/análise , DNA , Contaminação de Alimentos/análise
7.
J Oleo Sci ; 72(12): 1113-1123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044135

RESUMO

The extraction of olive oil produces annually huge quantities of Olive Mill Wastewater (OMW) that are considered as a source of pollution due to their high concentration in organic matter. This study aims to valorize Olive mill wastewater and investigates the effect of the extraction method and solvents on the contents and profiling of phenolic compounds and their antioxidant potential. It was revealed that the liquid-liquid method using ethyl acetate is the most effective followed by the maceration using chloroform/methanol (1:1), their polyphenol contents are respectively at 1.17 g GAE/L of OMW and 1.07 g GAE/L of OMW. In addition, the antioxidant activity was studied using ABTS test. It has shown that the methanolic extract has the best antioxidant activity at 15.75 mg/L. Moreover, we noticed a negative correlation between the phenolic compounds' concentration and their antioxidant activity which indicates that the phenolic profile may not be the same in the different extracts that's why a primary identification of the phenolic profile using UHPLC-MS was monitored and the results showed different chromatographic profiles between the samples.


Assuntos
Olea , Águas Residuárias , Olea/química , Cromatografia Líquida , Antioxidantes , Espectrometria de Massas em Tandem , Fenóis/análise , Azeite de Oliva/análise , Resíduos Industriais/análise
8.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139152

RESUMO

Dietary consumption of olive oil represents a key pillar of the Mediterranean diet, which has been shown to exert beneficial effects on human health, such as the prevention of chronic non-communicable diseases like cancers and neurodegenerative diseases, among others. These health benefits are partly mediated by the high-quality extra virgin olive oil (EVOO), which is produced mostly in Mediterranean countries and is directly made from olives, the fruit of the olive tree (Olea europaea L.). Preclinical evidence supports the existence of antioxidant and anti-inflammatory properties exerted by the polyphenol oleocanthal, which belongs to the EVOO minor polar compound subclass of secoiridoids (like oleuropein). This narrative review aims to describe the antioxidant and anti-inflammatory properties of oleocanthal, as well as the potential anticancer and neuroprotective actions of this polyphenol. Based on recent evidence, we also discuss the reasons underlying the need to include the concentrations of oleocanthal and other polyphenols in the EVOO's nutrition facts label. Finally, we report our personal experience in the production of a certified organic EVOO with a "Protected Designation of Origin" (PDO), which was obtained from olives of three different cultivars (Rotondella, Frantoio, and Leccino) harvested in geographical areas located a short distance from one another (villages' names: Gorga and Camella) within the Southern Italy "Cilento, Vallo di Diano and Alburni National Park" of the Campania Region (Province of Salerno, Italy).


Assuntos
Dieta Mediterrânea , Olea , Humanos , Azeite de Oliva/análise , Antioxidantes/farmacologia , Polifenóis , Anti-Inflamatórios
9.
J Agric Food Chem ; 71(46): 17543-17553, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948650

RESUMO

The Folin-Ciocalteu assay is a reference method for the quantification of total (poly)phenols in food. This review explains the fundamental mechanism of the redox reaction on which the method is based and looks at some of the practical considerations concerning its application. To accurately estimate the antioxidant capacity of (poly)phenolic compounds, a thorough knowledge of their structural characteristics is essential, as the two are closely associated. Therefore, to help researchers interpret the results of the Folin-Ciocalteu method, this review also summarizes some of the main phenolic structural features. Finally, we have used the Folin-Ciocalteu method to estimate the total phenolic intake associated with high adherence to a Mediterranean diet, ranked as one of the healthiest dietary patterns, which is characterized by a high consumption of (poly)phenol-rich food such as wine, virgin olive oil, fruits, vegetables, whole grains, nuts, and legumes.


Assuntos
Fenol , Fenóis , Fenol/análise , Fenóis/química , Extratos Vegetais/análise , Azeite de Oliva/análise , Frutas/química , Verduras
10.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005350

RESUMO

Phthalic acid esters (PAEs) are a class of chemicals widely used as plasticizers. These compounds, considered toxic, do not bond to the polymeric matrix of plastic and can, therefore, migrate into the surrounding environment, posing a risk to human health. The primary source of human exposure is food, which can become contaminated during cultivation, production, and packaging. Therefore, it is imperative to control and regulate this exposure. This review covers the analytical methods used for their determination in two economically significant products: olive oil and wine. Additionally, it provides a summary and analysis of information regarding the characteristics, toxicity, effects on human health, and current regulations pertaining to PAEs in food. Various approaches for the extraction, purification, and quantification of these analytes are highlighted. Solvent and sorbent-based extraction techniques are reviewed, as are the chromatographic separation and other methods currently applied in the analysis of PAEs in wines and olive oils. The analysis of these contaminants is challenging due to the complexities of the matrices and the widespread presence of PAEs in analytical laboratories, demanding the implementation of appropriate strategies.


Assuntos
Ácidos Ftálicos , Vinho , Humanos , Azeite de Oliva/análise , Vinho/análise , Ésteres/química , Ácidos Ftálicos/química
11.
Adv Food Nutr Res ; 107: 193-212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37898540

RESUMO

Olive (Olea europaea) is a native species from the Mediterranean region and widely cultivated for its edible fruit, known as olives. Olives are a rich source of monounsaturated fatty acids, vitamin E, and polyphenols, and have been shown to have various health benefits. They are commonly used for cooking and are also employed in cosmetics and the pharmaceutical industry. The extract obtained from olive fruits and several subproducts of the olive industry has demonstrated several biological activities mainly associated with their antioxidant and inflammatory properties. Thus, olives, olive-derived products, and subproducts of the olive industry have gained popularity in recent years due to their potential health benefits and their use in traditional medicine. The present chapter summarizes the main applications of Olea europaea and olive oil processing by-products as therapeutic agents against cancer, cardiovascular diseases, and antimicrobial agents.


Assuntos
Anti-Infecciosos , Olea , Azeite de Oliva/análise , Polifenóis , Frutas/química , Anti-Infecciosos/farmacologia
12.
Anal Chim Acta ; 1280: 341884, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858563

RESUMO

Digital images are commonly used to monitor processes that are based on colour changes due to their simplicity and easy capture. Colour information in these images can be analysed objectively and accurately using colour histograms. One such process is olive ripening, which is characterized by changes in chemical composition, sensory properties and can be followed by changes in physical appearance, mainly colour. The reference method to quantify the ripeness of olives is the Maturity Index (MI), which is determined by trained experts assigning individual olives into a colour scale through visual inspection. Instead, this study proposes a methodology based on Chemometrics Assisted Colour Histogram-based Analytical Systems (CACHAS) to automatically assess the MI of olives based on R, G, and B colour histograms derived from digital images. The methodology was shown to be easily transferable for routine analysis and capable of controlling the ripening of olives. The study also confirms the high potential of digital images to understand the ripening process of olives (and potentially other fruits) and to predict the MI with satisfactory accuracy, providing an objective and reproducible alternative to visual inspection of trained experts.


Assuntos
Olea , Olea/química , Azeite de Oliva/análise , Frutas/química
13.
Molecules ; 28(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836741

RESUMO

Flavoring olive oils is a new trend in consumer preferences, and different enrichment techniques can be used. Coextraction of olives with a flavoring agent is an option for obtaining a flavored product without the need for further operations. Moreover, ultrasound (US) assisted extraction is an emergent technology able to increase extractability. Combining US and coextraction, it is possible to obtain new products using different types of olives (e.g., cultivar and ripening stage), ingredient(s) with the greatest flavoring and/or bioactive potential, as well as extraction conditions. In the present study, mastic thyme (Thymus mastichina L.) (TM) and lemon thyme (Thymus x citriodorus) (TC) were used for flavoring Cornicabra oils by coextraction. The coextraction trials were performed by (i) thyme addition to the olives during crushing or malaxation and (ii) US application before malaxation. Several parameters were evaluated in the oil: quality criteria parameters, total phenols, fatty acid composition, chlorophyll pigments, phenolic profile and oxidative stability. US application did not change the phenolic profile of Cornicabra olive oils, while the enrichment of olive oils with phenolic compounds or pigments by coextraction was very dependent on the thyme used. TM enrichment showed an improvement of several new phenolic compounds in the oils, while with TC, fewer new phenols were observed. In turn, in the trials with TC, the extraction of chlorophyll pigments was higher, particularly in crushing coprocessing. Moreover, the oils obtained with US and TM added in the mill or in the malaxator showed lower phenol decrease (59%) than oils flavored with TC (76% decrease) or Cornicabra virgin olive oil (80% decrease) over an 8-month storage period. Multivariate data analysis, considering quality parameters, pigments and phenolic contents, showed that flavored oils were mainly grouped by age.


Assuntos
Olea , Thymus (Planta) , Azeite de Oliva/análise , Aromatizantes/análise , Fenóis/análise , Clorofila , Óleos de Plantas
14.
J Agric Food Chem ; 71(42): 15732-15744, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37820072

RESUMO

The oxidation reactions that take place in virgin olive oil under moderate conditions involved the combined effect of antioxidant and prooxidant compounds. Given the complexity of oxidation processes of multicomponent matrices, there is still a need to develop new methods with a dynamic approach to study the persistence of the compounds with healthy properties. This work studied the joint evolution of them, including phenols and pheophytin a, modeling their tendency during a real storage. The regression equations performed with the total phenol concentration showed that around 2% of the concentration was lost every month. Simultaneously, the progress of oxidation was evaluated by mesh cell incubation and Fourier transform infrared analysis. This method pointed out that, in the presence of light, the prooxidant effect of pigments was able to mask the protective effect of phenols, until the pheophytin a concentration was lower than 1 mg/kg. The antioxidant effect of phenols was less remarkable when the concentration loss was 35% or more.


Assuntos
Fenóis , Telas Cirúrgicas , Azeite de Oliva/análise , Fenóis/análise , Antioxidantes , Oxirredução , Óleos de Plantas
15.
J Agric Food Chem ; 71(42): 15701-15712, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37815987

RESUMO

The release of new olive cultivars with an increased squalene content in their virgin olive oil is considered an important target in olive breeding programs. In this work, the variability of the squalene content in a core collection of 36 olive cultivars was first studied, revealing two olive cultivars, 'Dokkar' and 'Klon-14', with extremely low and high squalene contents in their oils, respectively. Next, four cDNA sequences encoding squalene synthases (SQS) were cloned from olive. Sequence analysis and functional expression in bacteria confirmed that they encode squalene synthases. Transcriptional analysis in distinct olive tissues and cultivars indicated that expression levels of these four SQS genes are spatially and temporally regulated in a cultivar-dependent manner and pointed to OeSQS2 as the gene mainly involved in squalene biosynthesis in olive mesocarp and, therefore, in the olive oil. In addition, the biosynthesis of squalene appears to be transcriptionally regulated in water-stressed olive mesocarp.


Assuntos
Olea , Azeite de Oliva/análise , Olea/genética , Esqualeno/análise , Melhoramento Vegetal , Óleos de Plantas
16.
Food Chem ; 429: 136820, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37531872

RESUMO

At present, the quality of edible oil is evaluated using traditional analysis techniques that are generally destructive. Therefore, efforts are being made to find alternative methods with non-destructive techniques such as Ultrasound. This work aims to confirm the feasibility of non-destructive ultrasonic inspection to characterise and detect fraudulent practices in olive oil due to adulteration with two other edible vegetable oils (sunflower and corn). For this purpose, pulsed ultrasonic signals with a frequency of 2.25 MHz have been used. The samples of pure olive oil were adulterated with the other two in variable percentages between 20% and 80%. Moreover, the viscosity and density values were measured. Both these physicochemical and acoustic parameters were obtained at 24 °C and 30 °C and linearly correlated with each other. The results indicate the sensitivity of the method at all levels of adulteration studied. The responses obtained through the parameters related to the components of velocity, attenuation, and frequency of the ultrasonic waves are complementary to each other. This allows concluding that the classification of pure and adulterated oil samples is possible through non-destructive ultrasonic inspection.


Assuntos
Contaminação de Alimentos , Óleos de Plantas , Azeite de Oliva/análise , Contaminação de Alimentos/análise , Óleos de Plantas/análise , Ondas Ultrassônicas , Acústica
17.
Anal Chim Acta ; 1273: 341537, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423668

RESUMO

Despite the advances in low-field nuclear magnetic resonance (NMR), there are limited spectroscopic applications for untargeted analysis and metabolomics. To evaluate its potential, we combined high-field and low-field NMR with chemometrics for the differentiation between virgin and refined coconut oil and for the detection of adulteration in blended samples. Although low-field NMR has less spectral resolution and sensitivity compared to high-field NMR, it was still able to achieve a differentiation between virgin and refined coconut oils, as well as between virgin coconut oil and blends, using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and random forest techniques. These techniques were not able to distinguish between blends with different levels of adulteration; however, partial least squares regression (PLSR) enabled the quantification of adulteration levels for both NMR approaches. Given the significant benefits of low-field NMR, including economic and user-friendly analysis and fitting in an industrial environment, this study establishes the proof of concept for its utilization in the challenging scenario of coconut oil authentication. Also, this method has the potential to be used for other similar applications that involve untargeted analysis.


Assuntos
Contaminação de Alimentos , Óleos de Plantas , Azeite de Oliva/análise , Óleo de Coco/análise , Contaminação de Alimentos/análise , Óleos de Plantas/análise , Espectroscopia de Ressonância Magnética
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123213, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523847

RESUMO

Olive oil is a key component of the Mediterranean diet, rich in antioxidants and beneficial monounsaturated fatty acids. As a result, high-quality olive oil is in great demand, with its price varying depending on its quality. Traditional chemical tests for assessing olive oil quality are expensive and time-consuming. To address these limitations, this study explores the use of near infrared spectroscopy (NIRS) in predicting key quality parameters of olive oil, including acidity, K232, and K270. To this end, a set of 200 olive oil samples was collected from various agricultural regions of Morocco, covering all three quality categories (extra virgin, virgin, and ordinary virgin). The findings of this study have implications for reducing analysis time and costs associated with olive oil quality assessment. To predict olive oil quality parameters, chemical analysis was conducted in accordance with international standards, while the spectra were obtained using a portable NIR spectrometer. Partial least squares regression (PLSR) was employed along with various variable selection algorithms to establish the relationship between wavelengths and chemical data in order to accurately predict the quality parameters. Through this approach, the study aimed to enhance the efficiency and accuracy of olive oil quality assessment. The obtained results show that NIRS combined with machine learning accurately predicted the acidity using iPLS methods for variable selection, it generates a PLSR with coefficients of determination R2 = 0.94, root mean square error RMSE = 0.32 and ratios of standard error of performance to standard deviation RPD = 4.2 for the validation set. Also, the use of variable selection methods improves the quality of the prediction. For K232 and K270 the NIRS shows moderate prediction performance, it gave an R2 between 0.60 and 0.75. Generally, the results showed that it was possible to predict acidity K232, and K270 parameters with excellent to moderate accuracy for the two last parameters. Moreover, it was also possible to distinguish between different quality groups of olive oil using the principal component analysis PCA, and the use of variable selection helps to use the useful wavelength for the prediction olive oil using a portable NIR spectrometer.


Assuntos
Antioxidantes , Espectroscopia de Luz Próxima ao Infravermelho , Azeite de Oliva/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados , Agricultura
19.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373478

RESUMO

The seeds of Moringa oleifera (horseradish tree) contain about 40% of one of the most stable vegetable oils (Moringa seed oil). Therefore, the effects of Moringa seed oil on human SZ95 sebocytes were investigated and were compared with other vegetable oils. Immortalized human SZ95 sebocytes were treated with Moringa seed oil, olive oil, sunflower oil, linoleic acid and oleic acid. Lipid droplets were visualized by Nile Red fluorescence, cytokine secretion via cytokine antibody array, cell viability with calcein-AM fluorescence, cell proliferation by real-time cell analysis, and fatty acids were determined by gas chromatography. Statistical analysis was performed by the Wilcoxon matched-pairs signed-rank test, the Kruskal-Wallis test and Dunn's multiple comparison test. The vegetable oils tested stimulated sebaceous lipogenesis in a concentration-dependent manner. The pattern of lipogenesis induced by Moringa seed oil and olive oil was comparable to lipogenesis stimulated by oleic acid with also similar fatty acid secretion and cell proliferation patterns. Sunflower oil induced the strongest lipogenesis among the tested oils and fatty acids. There were also differences in cytokine secretion, induced by treatment with different oils. Moringa seed oil and olive oil, but not sunflower oil, reduced the secretion of pro-inflammatory cytokines, in comparison to untreated cells, and exhibited a low n-6/n-3 index. The anti-inflammatory oleic acid detected in Moringa seed oil probably contributed to its low levels of pro-inflammatory cytokine secretion and induction of cell death. In conclusion, Moringa seed oil seems to concentrate several desired oil properties on sebocytes, such as high content level of the anti-inflammatory fatty acid oleic acid, induction of similar cell proliferation and lipogenesis patterns compared with oleic acid, lipogenesis with a low n-6/n-3 index and inhibition of secretion of pro-inflammatory cytokines. These properties characterize Moringa seed oil as an interesting nutrient and a promising ingredient in skin care products.


Assuntos
Moringa oleifera , Moringa , Humanos , Moringa oleifera/química , Azeite de Oliva/farmacologia , Azeite de Oliva/análise , Sementes/química , Ácidos Graxos/análise , Óleos de Plantas/química , Ácido Oleico/farmacologia , Ácido Oleico/análise , Citocinas/análise
20.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375216

RESUMO

Virgin coconut oil (VCO) is a functional food with important health benefits. Its economic interest encourages fraudsters to deliberately adulterate VCO with cheap and low-quality vegetable oils for financial gain, causing health and safety problems for consumers. In this context, there is an urgent need for rapid, accurate, and precise analytical techniques to detect VCO adulteration. In this study, the use of Fourier transform infrared (FTIR) spectroscopy combined with multivariate curve resolution-alternating least squares (MCR-ALS) methodology was evaluated to verify the purity or adulteration of VCO with reference to low-cost commercial oils such as sunflower (SO), maize (MO) and peanut (PO) oils. A two-step analytical procedure was developed, where an initial control chart approach was designed to assess the purity of oil samples using the MCR-ALS score values calculated on a data set of pure and adulterated oils. The pre-treatment of the spectral data by derivatization with the Savitzky-Golay algorithm allowed to obtain the classification limits able to distinguish the pure samples with 100% of correct classifications in the external validation. In the next step, three calibration models were developed using MCR-ALS with correlation constraints for analysis of adulterated coconut oil samples in order to assess the blend composition. Different data pre-treatment strategies were tested to best extract the information contained in the sample fingerprints. The best results were achieved by derivative and standard normal variate procedures obtaining RMSEP and RE% values in the ranges of 1.79-2.66 and 6.48-8.35%, respectively. The models were optimized using a genetic algorithm (GA) to select the most important variables and the final models in the external validations gave satisfactory results in quantifying adulterants, with absolute errors and RMSEP of less than 4.6% and 1.470, respectively.


Assuntos
Contaminação de Alimentos , Óleos de Plantas , Óleo de Coco , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Contaminação de Alimentos/análise , Óleos de Plantas/análise , Análise dos Mínimos Quadrados , Azeite de Oliva/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...